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Abstract. We present a proof of the Britto–Cachazo–Feng–Witten tree-level recursion relation for gluon am-
plitudes in QCD, based on a direct equivalence between BCFW decompositions and Feynman diagrams. We
demonstrate that this equivalence can be made explicit when working in a convenient gauge. We exhibit that
gauge invariance and the particular structure of Yang–Mills vertices guarantee the validity of the BCFW
construction.

1 Introduction

During the last year much progress has been made in
the understanding of analytical calculations of dual ampli-
tudes in perturbative Yang–Mills theories. Led by an ob-
servation ofWitten [1], Britto, Cachazo and Feng (BCFW)
have proposed a new recursion relation for tree amplitudes
of gluons [2] that naturally arrives at the simplest known
expressions for some of those amplitudes in terms of Weyl–
Van der Waerden spinor products. Explicit calculations
have been performed using this technique [3, 4], extensions
to amplitudes involving particles from the electroweak sec-
tor [5] have been pursued and a new approach to one loop
amplitudes has been proposed [6] employing MHV vertices
and unitarity arguments.
The BCFW recursion relation features some remark-

able characteristics, among which we have the on-shell an-
alytic continuation of selected off-shell propagators, the
analytic continuation of two selected external momenta in
the complex plane and a decomposition of a color helicity
amplitude into smaller helicity amplitudes with complex
external momenta that does not appear to be in direct
connection with the decomposition in Feynman diagrams.
Moreover, the BCFW relation leads to the use of only
three-point (modified) vertices as building blocks of the
theory, thus raising questions about the fundamental na-
ture of the Yang–Mills four-point vertex.
A proof of the BCFW relation was given by Britto,

Chachazo, Feng and Witten [7] which, though it made the
connection between the analyticity properties of the color
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amplitude and the BCFWdecomposition obvious, shed lit-
tle light on the way the latter relates to the usual Feynman
diagram approach.
The simplicity of the final result for tree-level glu-

onic amplitudes implies the existence of major cancela-
tions between Feynman graphs. Since the BCFW formal-
ism avoids those cancelations altogether it is advantageous
to find a diagrammatic proof of the BCFW decomposition
in order to understand these cancelations on the level of
Feynman diagrams. A number of questions immediately
arise. Is a diagrammatic proof gauge dependent? If so, are
there preferable gauges where simplifications take place?
Which gauges are those? Is this decomposition exclusively
working for pure YM theories, and if so, what is the key fea-
ture of the YM vertices that makes it work? Can we find
a BCFW type recursion relation for scalar theories?
We intend to address these questions in the present

paper as well as to give a generic diagrammatic proof of
the BCFW decomposition. The paper is organized as fol-
lows: after clarifying some notation issues in Sect. 2, we
present in Sect. 3 an analysis based on diagram enumera-
tion that hints towards a connection between BCFW de-
compositions and Feynman graphs. In Sect. 4 we prove
some important kinematical identities that will support
the main parts of the diagrammatic proof (Sects. 6 and 7),
whereas Sect. 5 describes the gauge in which we are work-
ing and the consequences of that choice. We conclude with
some remarks on the generality of the proof and the role of
gauge invariance in this analysis in Sect. 8.

2 Notation

All amplitudes mentioned in this paper are the color-
ordered amplitudes that result after the usual trace-based



742 P.D. Draggiotis et al.: Diagrammatic proof of the BCFW recursion relation for gluon amplitudes in QCD

color decomposition [8]. We will conveniently omit all
coupling constants and factors of i as well as the color an-
tenna of all color-ordered amplitudes in what follows.
In non-vanishing tree-level color-ordered amplitudes,

one can, without loss of generality, pick out a pair of ad-
jacent legs with opposite helicity and label the positive
helicity one by 1 and the negative helicity one by n. Un-
less otherwise specified we will use this labeling throughout
this paper.
The Dirac four-spinors used in this paper are the usual

u±(p), ū±(p) with the important note that the relation be-
tween u(p) and ū(p) is not one of complex conjugation.
The relation with Weyl–Van der Waerden spinors,

when using the Weyl representation of γ-matrices, is

u+(p) = (0, λ̃ḃ(p)ε
ḃȧ), ū+(p) = (λb(p)ε

ba, 0), (1)

u−(p) = (λa(p), 0), ū−(p) = (0, λ̃ȧ(p)). (2)

Four-momenta can be written in terms of Weyl spinors
as

pµ =
1

2
ū−(p)γµu−(p) =

1

2
λ̃ȧ(p)σ

ȧa
µ λa(p), (3)

and products of four-vectors can be performed using the
identity

σµ,ȧaσḃbµ = 2ε
ȧḃεab, (4)

where σµ = (I,−σ), and similar identities for the σ’s.
Note that, since

σµ,ȧaσµ,bḃ = 2δ
ȧ
ḃ
δab , (5)

we can write

(pσ)aȧ = p
µσµ,aȧ = λa(p)λ̃ȧ(p). (6)

Moreover, the usual conventions for spinor products1

will be adopted:

〈ij〉 ≡ ū+(pi)u−(pj) = λa(pi)λb(pj)ε
ab, (7)

[ij]≡−ū−(pi)u+(pj) = λ̃ȧ(pi)λ̃ḃ (pj)ε
ȧḃ. (8)

This results in

2pq = 〈pq〉[pq]. (9)

A fairly general definition of the external gluons’ polar-
ization vectors2. is (see [9, 10] for similar definitions)

εµ+(p) =
ū+(p)γ

µu+(p)√
2ū+(p)u−(p)

=
λ̃ȧ(p)σ

µ,ȧaλa(p)√
2〈pp〉

,

εµ−(p) =
ū−(p)γ

µu−(p)√
2ū−(p)u+(p)

=−
λ̃ȧ(p)σ

µ,ȧaλa(p)√
2[pp]

, (10)

1 Note the minus sign in the [ij] definition with respect to the
definition in [9].
2 This corresponds to the light-like axial gauge

where p is an auxiliary, null four-vector that can be chosen
at will for every gluon as long as it is not parallel to p itself.
Note that one could write

ε+aȧ(p)≡ ε
+
µ (p)σ

µ
aȧ =

√
2
λa(p)λ̃ȧ(p)

〈pp〉
, (11)

ε−aȧ(p)≡ ε
−
µ (p)σ

µ
aȧ =−

√
2
λa(p)λ̃ȧ(p)

[pp]
, (12)

and perform vector products using

paȧqbḃε
abεȧḃ = 〈pq〉[pq] = 2pq. (13)

It should be noted that nothing of what follows depends
on the precise conventions we adopt for the Van der Waer-
den or Dirac spinors. In fact the present analysis, that deals
with pure gluonic amplitudes, could be performed exclu-
sively on the level of four-vectors.
The hat symbol over a function of momenta f̂(q) will

denote the function f̂(q; z) where the argument of f is an-
alytically continued (shifted) by a general four-vector zεµ,
with

εµ ≡
1

2
ū−(p1)γµu−(pn) =

1

2
λ̃ȧ(p1)σ

ȧa
µ λa(pn). (14)

This has the effect

q→ q̂ = q+ zε. (15)

We will omit the explicit reference to the z-dependence
of f̂(p) since this is signified by the hat symbol.

3 Counting contributions

The BCFW recursive relation for pure gluon color-ordered
amplitudes is given by

A(pλ11 , . . . , p
λn
n ) =

∑

λX=±1

n−1∑

k=1

A(p̂λ11 , . . . , p
λk
k ,−p̂

−λX
X )

×
1

P 21...k
A(p̂λXX , p

λk+1
k+1 , . . . , p̂

λn
n ), (16)

where p and λ represent momentum and polarization. In
this section we would like to study the diagrammatic con-
tent of the BCFW equation. The most appropriate way to
do so is, of course, to neglect any reference to polarization
and also drop the propagator factor, while keeping the or-
dering of the momenta. In that case of course we count
planar graphs [12] and it is obvious that the equation is not
self-consistent. In fact the form of the equation is given by

A=
∑

(17)

or in a more mathematical form

ABCF1→n =
n−1∑

k=1

A1→k+1A1→n−k+1. (18)
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The equation ABCF1→n = A1→n cannot be true be-
cause of the following reasons:

– Firstly, contributions where no propagator line exists
between the 1st and the nth particle, are not included
in the BCFW equation

A0 = + (19)

These contributions are given by

A01→n =A1→n−1+
∑

n1+n2=n−1

A1→n1A1→n2 . (20)

– Secondly, BCFW is multiple-counting contributions of
the form

. . .

or

. . .

In fact we suggest that this over counting is exactly
equal to the multiplicity of propagator lines connecting
particles 1 and n.

To make our argumentsmore quantitative we start with
the Berends–Giele [11] (or Dyson–Schwinger for ordered
graphs [13, 14]) recursive equation for a generic theory with
three- and four-vertices.

=

+ (21)

A1→n =
∑

n1+n2=n

A1→n1A1→n2

+
∑

n1+n2+n3=n

A1→n1A1→n2A1→n3 , (22)

and we write the following equation:

A1→n =A
BCF

1→n+A
0
1→n−D, (23)

where A01→n are the classes of diagrams in (19) and the
substracted term D accounts for the overcounting of di-
agrams. Since the overcounting relates to diagrams with
2, 3, . . . propagators on the line between the first and the
last leg, it can be seen that

D =
n−1∑

M=3

(M −2)
M∑

k=0

(
M
k

)
DnM+k, (24)

whereM−1 is the number of propagators of the particular
overcounted class of diagrams, and

DnM =
∑

n1+...+nM=n

A1→n1 . . .A1→nM (25)

counts the number of diagrams within that class. As an ex-
ample for n= 5 (six-leg gluon amplitude), the number of
Feynman graphs isA= 38, the number of BCFW graphs is
ABCF = 29, the number of graphs without any propagator
between the first and the last leg isA0 = 17 so overcounting
should giveD = 8. The following graphs are overcounted:

(26)

with the first diagram doubly overcounted (it contains
three propagators). That diagram corresponds to theM =
4while the other graphs come from theM = 3 term of (24).
In Table 1 we give the results for up to n= 11 particles.
This analysis hints strongly towards the idea that

a connection between Feynman diagrams and the BCFW
decomposition might be achieved by grouping together
BCFW (hatted) diagrams with the same chain structure
along the main line (the same number of propagators,
hence the same multiplicity) but differently placed cuts:
The multiplicity of each group is equal to the number of
propagators along the main line which in turns equals the
number of possible cuts (one for each propagator along the
main line).

4 Kinematical identities

For any function f̂(p; z) of z that has only simple poles in z
and vanishes at z→∞, we can perform an expansion over
its poles. In particular we have

f̂(p; z) =
∑

j

[
f̂(p; z)(z− zj)

]

z=zj

1

z− zj
, (27)
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Table 1. Overcountingofdiagrams in theBCFrelation, see (23)

1→ n A ABCF A0 ABCF+A0−A D

3 3 1 2 0 0
4 10 6 5 1 1
5 38 29 17 8 8
6 154 136 64 46 46
7 654 636 259 241 241
8 2871 2992 1098 1219 1219
9 12925 14190 4815 6080 6080
10 59345 67860 21659 30174 30174
11 276835 327080 99385 149630 149630

where the sum is over all the simple poles zj of f̂(p; z). This
very general identity allows us to analytically continue the
function f(p) to the complex plane, make use of the pole
expansion and take the limit z→ 0 to return to the real
axis, thus obtaining a relation between f(p) and the pole
expansion of f̂(p; z).
Applying this to a momentum antenna we get

1

p̂21p̂
2
2 . . . p̂

2
k

=
∑

j=1..k

[
1

p̂21p̂
2
2 . . . p̂

2
j−1p̂j+1 . . . p̂

2
k

]

z=zj

1

p̂2j
,

(28)

with zj such that

p̂j(zj)
2 = (pj+ zjε)

2 = p2j +2zjpjε= 0, (29)

where p1 . . . pk are arbitrary off-shell four-momenta. In the
next sections we will use the above identity with pi being
sums of on-shell momenta of the form p1k = p1+p2+ . . .+
pk.
Taking the limit z→ 0 at both sides we have

1

p21p
2
2 . . . p

2
k

=
∑

j=1..k

[
1

p̂21p̂
2
2 . . . p̂

2
j−1p̂

2
j+1 . . . p̂

2
k

]

z=zj

1

p2j
.

(30)

Furthermore

z�

p̂21p̂
2
2 . . . p̂

2
k

=
∑

j=1..k

[
z�

p̂21p̂
2
2 . . . p̂

2
j−1p̂

2
j+1 . . . p̂

2
k

]

z=zj

1

p̂2j
,

(31)

which gives the very useful set of identities, valid for every
� < k:

∑

j=1..k

[
z�

p̂21p̂
2
2 . . . p̂

2
j−1p̂j+1 . . . p̂

2
k

]

z=zj

1

p2j
= 0. (32)

Finally, if z = k, the function in the left hand side of
(31) is no longer vanishing at z→∞. Subtracting its limit

at infinity, however, we have a new function that is, so

zk

p̂21p̂
2
2 . . . p̂

2
k

− lim
z→∞

zk

p̂21p̂
2
2 . . . p̂

2
k

=
∑

j=1..k

[
zk

p̂21p̂
2
2 . . . p̂

2
j−1p̂j+1 . . . p̂

2
k

]

z=zj

1

p̂2j
, (33)

and taking the limit z→ 0 we get

− lim
z→∞

zk

p̂21p̂
2
2 . . . p̂

2
k

=

∑

j=1..k

[
zk

p̂21p̂
2
2 . . . p̂

2
j−1p̂j+1 . . . p̂

2
k

]

z=zj

1

p2j
(34)

or

−1
∏k
j=1 2εpj

=
∑

j=1..k

[
zk

p̂21p̂
2
2 . . . p̂

2
j−1p̂j+1 . . . p̂

2
k

]

z=zj

1

p2j
.

(35)

5 Choosing a gauge

We have seen in Sect. 3 that classes of Feynman diagrams
should somehow correspond to particular BCFW decom-
positions. Using a particular gauge for the external gluons
one can eliminate whole classes of Feynman diagrams.
A consistent definition of the external gluons’ polariza-

tion vectors was given in (10) where p is an auxiliary, null
four-vector that can be chosen at will for every gluon as
long as it is not parallel to p itself.
We choose to use p1 = pn and pn = p1:

εµ+1 =
ū+nγ

µu+1√
2ū+nu−1

=
λ̃ȧ(p1)σ

µ,ȧaλa(pn)√
2〈n1〉

, (36)

εµ−n =
ū−1γ

µu−n√
2ū−nu+1

=−
λ̃ȧ(p1)σ

µ,ȧaλa(pn)√
2 [n1]

. (37)

A number of simplifications follow immediately. The
product of ε1 with εn or ε (defined in (14)) vanishes

ε1εn = 0 = εε1 = εεn. (38)

Moreover

ε+1pn = 0 = ε−np1. (39)

As a consequence, any diagram in which the first and the
last leg meet in a three-vertex vanishes:

= 0, (40)

where the blob denotes any Feynman diagram with the
particular off-shell leg.
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These simplifications are in the correct direction in view
of the fact that there are no BCFW graphs with the first
and the last leg in the same vertex. We still have to deal
with the case when 1 and n are attached in a four-vertex
whose two other lines are off-shell (another situation that
does not occur in a BCFW decomposition). We will see in
the next section how to accommodate these diagrams.
Finally, we should note that the polarization vectors

εµ+1 and ε
µ
−n actually differ by a complex phase. They also

differ by a complex factor from the shifting vector ε (see
(14)). Note that in any expression where all these three
vectors appear in scalar products, one is allowed to freely
interchange them, without altering the result. In a very
real sense there is actually only one polarization vector in
this gauge.
Finally, the polarization vectors are now invariant

under the shifting operation:

p1→ p1+ zε, pn→ pn− zε. (41)

If we write

pµ1 =
1

2
ū−1γ

µu−1→
1

2
ū−1γ

µu−1+
1

2
zū−1γ

µu−n (42)

and

pµn =
1

2
ū−nγ

µu−n→
1

2
ū−nγ

µu−n+
1

2
zū−1γ

µu−n, (43)

we see that the shifting operator effectively sends

u−1→ u−1+ zu−n,

ū−n→ ū−n− zū−1, (44)

or, in terms of Weyl–Van der Waerden spinors

λa(p1)→ λa(p1)+ zλa(pn),

λ̃ȧ(pn)→ λ̃ȧ(pn)− zλ̃ȧ(p1). (45)

As a result, the denominators of ε+1 and ε−n become

〈n1〉 → 〈n1〉+ z〈nn〉= 〈n1〉 (46)

and

[n1]→ [n1]− z[11] = [n1]. (47)

The only restriction that we impose on the polarization
vectors of the other gluons is that they remain invariant
under the shifting operator. In case their assisting vectors
pi involve p1 or pn this should be arranged in a way that
preserves this invariance.
This gauge choice explicitly eliminates any

z-dependence from the polarization vectors. The shifting
operation affects amplitudes only through the shift at the
momenta four-vectors p1 and pn, and the induced shift
to the momenta of intermediate propagators. Polariza-
tion vectors and vertices that do not carry p1 and pn are
left unchanged. Therefore, a diagram after shifting will be
a complex function with poles coming from three-vertices
or propagators.

This is in contrast with a general gauge, where the po-
larization vectors ε+1 and ε−n get an extra factor involving
z in their denominator. A pole expansion, in that case,
would need to take into account (gauge dependent) poles
coming from the gluon polarization vectors.
Counting powers of z in the general gauge shows (see

the concluding discussion in [7]) that any diagram vanishes
at the limit z→∞. This is not in general true in the gauge
we are working. The z→∞ limit of a diagram is used as
a guide to group diagrams in classes where these limits
cancel.

6 Review of the BCFW decomposition

According to the simplest version of the BCFW decompos-
ition, the color amplitude A(pi;hi), where hi is the helicity
of the i’th gluon, is equal to

A(ph11 , . . . , p
hn
n ) =

n−1∑

j=2

∑

h

A(p̂h11 , . . . , p
hj
j ,−P̂

h
1...j)

×
1

P 21...j
A(P̂−h1...j , p

h+1
j+1 , . . . , p̂

hn
n ).

(48)

The sum over j extends over all partitions of the n−2 glu-
ons in two groups. The amplitude is recovered from the
sum of n−2 decompositions in lower level amplitudes eval-
uated at a particular z = zj such that P̂1...j(zj)

2 = 0.
Let us call “hatted” diagrams graphs of the form

(49)

denoting the corresponding Feynman graph where we have
multiplied by p21A, we have performed the momenta shift,
evaluated it at some z = zi and divided back by p

2
1A. The

value zi is defined by the demand that the ‘cut’ propagator,
carrying momentum p̂1A, vanishes: p̂

2
1A = 0.

In terms of ‘hatted’ graphs, the BCFW decomposition
consists in two blobs, one containing the first and one the
last leg, the amplitude is hatted and a cut is taken on the
propagator that connects the two blobs. A sum over all par-
titions of n in two integers is employed. Evidently, every
particular BCFW decomposition over some propagator Pi
is equivalent to the sum of all hatted diagrams with that
particular propagator cut.
Thus the sum of all possible decompositions is equiva-

lent to the sum of all hatted diagrams with all possible cuts
along the line of propagators that connects the first and the
last leg of the original color amplitude.
In what follows we will prove that the sum of all pos-

sible hatted diagrams is equivalent to the sum of Feynman
diagrams involved in the computation of the particular
amplitude.
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7 The correspondence of hatted graphs
to Feynman diagrams

The special treatment of the two selected external legs 1
and n implies a special classification of the various Feyn-
man diagrams involved in the given amplitude. There are
classes of diagrams with zero, one,two, . . . propagators on
the line between the first and the last leg. Every class con-
sists of subclasses defined by the particular partition of the
other n−2 external legs in which they are connected to the
main line.
A particular diagram with n = 20 would be, for ex-

ample,

(50)

and would correspond to the class

(51)

and more precisely to its subclass with 3, 1, 2, 1, 5, 3, 3 on-
shell legs in the corresponding blobs3. Let
m1,m2, . . . ,mk+1 be a particular partition of n−2, such
that

∑
mi = n− 2. The blobs denote the full set of all

possible color-ordered diagrams with one off-shell and mi
on-shell legs.
Let us call this subclass of Feynman diagrams F (m1,

. . . , m̃j , m̃j+1, . . . ,mk+1) where the tildes on top of two
consecutivem’s mark the presence of a four-vertex attach-
ing the corresponding blobs to the line:

F (m1, . . . , m̃j , m̃j+1, . . . ,mk+1) =

. . . . . . (52)

The particular subclass of diagrams in (51) would then be
called F (3, 1̃, 2̃, 1̃, 5̃, 3, 3) and (50) would be one of the ac-
tual Feynman diagrams contained in that subclass.
In the gauge we are working in, the hatting operator

would leave the contribution of the blobs, in such a dia-
gram, invariant since the momentum flowing into the blob
does not contain p1 or pn. It would only affect the propa-
gators and vertices along the main line. After the shifting

3 A blob with mi on-shell legs and one off-shell denotes the
corresponding sum of color-ordered diagrams with one off-shell
leg andmi on-shell legs.

of the momenta a cut can be placed on any of the propa-
gators on the line, thus fixing the value of z at which the
residue should be evaluated. We shall denote such a graph
with a cut on the j’th propagator by

H(m1, . . . ,mk+1; j) =
[
F̂ (m1, . . . ,mk+1)p̂

2
1j

]

z=zi

1

p21j
.

(53)

Here and in what follows p1Ai denotes the sum of exter-
nal momenta

p1Ai = p1+pAi+pA2+ . . .+pAi, (54)

with

pAi =

mi∑

k=1

pk. (55)

A closer look at the “hatted” diagram will reveal that
hatting affects, through the momenta p1 and pn, only the
three-vertices along the main line. The four-vertices, not
carrying any momentum, remain unchanged. The effect on
the three-vertices is included in the “hatted” YM three-
gluon vertices, which we denote with a crossed white blob
in the figures. Each of these can be decomposed in two
pieces:

= V̂µν�

= gµν(p̂1−p2)�+ gν�(p2− p̂3)µ+ g�µ(p̂3− p̂1)ν
= gµν(p1−p2)�+ gν�(p2−p3)µ+ g�µ(p3−p1)ν
− zεσ(2gµ�gνσ− gµσgν�− gµνgσ�)

= Vµν�− zε
σ(2gµ�gνσ− gµσgν�− gµνgσ�)

= + (56)

where

=−zVµν�σ, (57)

with Vµν�σ the QCD four-vertex.
Let us concentrate for the moment on the class of dia-

grams with the smallest number of propagators along the
line between the first and the last leg: diagrams with no
propagators along the line can have a three- or a four-
vertex joining these two legs. The whole class of diagrams
with a three-vertex joining the first and the last leg van-
ishes identically in the gauge we are using. The remaining
class with one four-vertex will be dealt with soon.
Next, we have the class with one propagator along the

main line.



P.D. Draggiotis et al.: Diagrammatic proof of the BCFW recursion relation for gluon amplitudes in QCD 747

If we write JµQ for the current coming from the blob Q,
we have

H(m1,m2; 1)≡

=
[
ε1µJAν V̂

µν�V̂�κλJ
κ
Bε
λ
n

]

z0

1

p21A
= [ε1µJAν(V

µν�− zεσV
σµν�)

×(V�κλ− zε
τVτ�κλ)J

κ
Bε
λ
n

]
z0

1

p21A
=
[
ε1µJAνV

µν�V�κλJ
κ
Bε
λ
n

−zε1µJ1νεσV
σµν�V�κλJ

κ
Bε
λ
n

−zε1µJAνV
µν�ετVτ�κλJ

κ
Bε
λ
n

+z2ε1µJAνεσV
σµν�ετVτ�κλJ

κ
Bε
λ
n

]
z0

1

p21A
.

(58)

The first, z-independent, term in the bracket equals the
Feynman diagram with one propagator. The last term in
the bracket vanishes due to (38) and we get

H(m1,m2; 1)≡

=

− [2(εp1A)(ε1JA)(εnJB)]z0
1

p21A
,

with

z0 =−
p21A
2(p1Aε)

, (59)

where we have used momentum conservation and our free-
dom to interchange the polarization vectors. So

H(m1,m2; 1)≡

= + (60)

or

H(m1,m2; 1) = F (m1,m2)+F (m̃1, m̃2). (61)

In the case that the blobs A and B of the first diagram
in (60) contain exactly one on-shell leg, the BCFW decom-
position leads to two hatted QCD 3-vertices. We have ver-
ified that the usual QCD 3-vertex evaluated at the hatted
kinematics reproduces the formulas

A(1̂+, 2−, q̂+) =
√
2
[q̂1̂]3

[1̂2][2q̂]
(62)

and

A(1̂+, 2+, q̂−) =
√
2
[1̂2̂]3

[2q̂][q̂1]
, (63)

where pq =−p1−p2 is the off-shell leg and p̂q =−p1−p2−
zε is its on-shell continuation4. The corresponding formu-
las involving the last leg (which has negative helicity) work
similarly but include angle bracket spinor products.
Proceeding to graphs that contain two propagators be-

tween the first and the last leg or graphs that contain one
propagator with one four-vertex attached to it, we have

+

(64)

+ +

= +

+ (65)

The expressions that correspond to the first two hatted
graphs on the left hand side are quadradic in z and are eval-
uated in different values of z, z1 and z2:

=

[
H0
1

p̂21B
+H1

z

p̂21B
+H2

z2

p̂21B

]

z=z1

1

p21A
,

(66)

with p1B = p1+pA+pB

=

[
H0
1

p̂21A
+H1

z

p̂21A
+H2

z2

p̂21A

]

z=z2

1

p21B
(67)

The z-independent term of all four graphs gives the
Feynman graphs of the right hand side of (65), due to the
kinematic identity (30).
Moreover, the part linear in z of the first two graphs

cancels identically due to (32) with � = 1. The quadratic
part of the first two graphs cancels exactly the part linear
in z of the two last graphs on the left hand side of (65).
The generalization of the above mechanism goes as fol-

lows: Each hatted diagram with v3 three-vertices along the

4 The other polarizations (A(1̂+, 2+, q̂+), A(1̂+, 2−, q̂−)) can
be shown to vanish.
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main line can be decomposed in a sum of sub-diagrams
having 0, 1, . . . , v3 white-blob vertices corresponding to
0, 1, . . . , v3 powers of z (evaluated at some zi). If the dia-
gram also has v4 four-vertices, the number of propagators
along the line is v3+ v4−1.
The sum over all possible cuts for the particular dia-

gram can then be written as

v3+v4−1∑

j=1

H(m1 . . .mk; j)

=

v3+v4−1∑

j=1

⎡

⎣(H0+ zH1+ z2H2+ . . .Hv3z
v3)
∏

q �=j

1

p̂21q

⎤

⎦

z=zj

×
1

p21j
, (68)

or

v3+v4−1∑

j=1

H(m1 . . .mk; j) =H0

v3+v4−1∑

j=1

[
1∏

q �=j p̂
2
1q

]

z=zj

1

p21j

+H1

v3+v4−1∑

j=1

[
z∏

q �=j p̂
2
1q

]

z=zj

1

p21j

+H2

v3+v4−1∑

j=1

[
z2∏
q �=j p̂

2
1q

]

z=zj

1

p21j

+ . . .

+Hv3

v3+v4−1∑

j=1

[
zv3∏
q �=j p̂

2
1q

]

z=zj

×
1

p21j
. (69)

Due to the set of identities (32), all terms involving zλ with
0< λ < v3+ v4−1 vanish identically.
Moreover it is easy to see that the z-independent term

involvingH0 will give the corresponding Feynman diagram
with the help of the identity (30).
Let us further distinguish among three cases: diagrams

with no four-vertex on the line (v3 = k+1), with one four-
vertex (v3 = k) and with more than one four-vertex (v3 <
k). In the third case the right hand side of (69) reduces
to the z-independent term corresponding to the Feynman
diagram. All terms involving z vanish. In other words the
sum over all possible cuts of the hatted diagrams with two
or more four-vertices on the line is equal to the correspond-
ing Feynman diagrams.
In the first two cases the sum of all hatted diagrams

over all possible cuts gives the corresponding Feynman dia-
grams plus a number of terms. We will now show that these
terms cancel exactly each other due to the structure of the
YM vertices.

Diagrams with no four-vertex on the line have v3 = k+
1 three-vertices. They are of the form

H(m1, . . . ,mj ,mj+1, . . . ,mk+1; j)

= . . . . . . (70)

The highest order term involves Hk+1 that vanishes iden-
tically: it corresponds to diagrams with only crossed white
blobs on the line, hence it consists of contractions of ε with
itself or ε1, εn. The next to leading order term,Hk, is a sum
of terms with one QCD vertex and k crossed white-blob
vertices.
We have

k∑

j=1

H(m1 . . .mk+1; j) = F (m1 . . .mk+1)

+Hk

k∑

j=1

[
zk∏
q �=j p̂

2
1q

]

z=zj

1

p21j
,

(71)

and using the kinematical identity (35) we get

k∑

j=1

H(m1 . . .mk+1; j) = F (m1 . . .mk+1)−Hk
1

∏k
j=1 2εp1j

.

(72)

Let us denote by Hk,r the term where the QCD vertex
is coming from the r’th hatted vertex.
Hk,r is the numerator of a diagram containing blobs

connected with the main line by white-blob vertices
εcMµν�c everywhere except the QCD r’th vertex. A generic
piece on the line will contribute by

≡M(Ai)µ�

=−JνAiε
c(2gcνgµ�− gcµgν�− gc�gµν)

=−(2(JAiε)gµ�−JAi,µε�−JAi,�εµ),
(73)

where JνAi is the current (subamplitude) coming from the
i’th blob. The first such white-blob vertex, when con-
tracted with εµ1 , gives

. . .= εµ1M(A1)µ� =−(ε1JA1)ε�. (74)
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It is easy to see that a chain of consecutive white-blob ver-
tices gives

. . .

= (−1)�(ε1JA1)(εJA2) . . . (εJAs)ε�. (75)

Since Hk,r has k such vertices we get

Hk,r = (−1)
k
∏

j �=r

(εJAj )ε
µ
1J
ν
Arε

�
n

× (gµν(p1,r−1−pr)�+ gν�(pr+p1,r)µ
+ g�µ(−p1,r−p1,r−1)ν)

= (−1)k
∏

q �=r

(εJAq)(εnJAr )((p1,r−1+p1,r)ε1),

(76)

where repeated use was made of our ability to interchange
ε1, εn and ε. Note that for the boundary terms, r = 1 and
r = k+1, the above formula must be understood with the
definitions p1,0 = p1,k+2 = 0.
Summing over r we regainHk, and

k∑

j=1

H(m1 . . .mk+1; j) = F (m1 . . .mk+1)+ (−1)
k+1

×
1∏

j 2εp1j

∑

r

(ε1JA1) . . . (εnJAn)[(p1,r−1+p1,r)ε]

= F (m1 . . .mk)++(−1)
k+1(ε1JA1) . . . (εnJAn)

×
∑

r

2p1,rε

(2εp11)(2εp12) . . . (2εp1k)

= F (m1 . . .mk)

+ (−1)k+1(ε1JA1) . . . (εnJAn)
∑

r

1∏
q �=r(2εp1q)

. (77)

Let us consider now a diagram that could occur from
the ones above by contracting a propagator, thereby merg-
ing two of the three-vertices, say the r’th and the r+1’th
in one four-vertex. Such a diagram has one four-vertex on
the line and one propagator less, that is, it has k vertices
of which k−1 three-vertices and one four-vertex, as well as
k−1 propagators:

H(m1, . . . , m̃r, m̃r+1, . . . ,mk+1; j)

= . . . . . . (78)

The sum over all cuts of such hatted diagrams is

k∑

j=1
j �=r

Hr(m1, . . . , m̃r, m̃r, . . . ,mk; j)

= F (m1, . . . , m̃r, m̃r, . . . ,mk)

+Hk,r

k∑

j=1
j �=r

[
zk−1∏
q �=j,r p̂

2
1q

]

z=zj

1

p21j
, (79)

where r denotes the position of the four-vertex. As before,
all contributions involving zλ for 0< λ < k−1 vanish due
to (32). Using the identity (35) we can perform the j sum
over cuts and get

k∑

j=1
j �=r

Hr(m1, . . . , m̃r, m̃r, . . . ,mk; j)

= F (m1, . . . , m̃r, m̃r, . . . ,mk)− H̃k−1,r
1∏

q �=r 2εp1q
.

(80)

Here H̃k−1,r stands for the vertex contribution of a di-
agram with one four-vertex and k− 1 white-blob three-
vertices. It is not difficult to see that this is equal to

H̃k−1,r = (−1)
k−1(ε1JA1)(εJA2) . . . (εnJAk). (81)

Summing up over all possible positions of the four-vertex
we get

k∑

r=1

k∑

j=1
j �=r

Hr(m1 . . .mk; j) = F (m1, . . . , m̃r, m̃r, . . . ,mk)

+ (−1)k(ε1JA1) . . . (εnJAn)
∑

r

1∏
q �=r 2εp1q

, (82)

which exactly cancels the last term of equation (77), thus
completing the proof that the sum over all cuts of all pos-
sible hatted diagrams is equal to the sum of Feynman
diagrams.

8 Remarks on generality

We have seen in the previous sections how the BCFW
decomposition is related to Feynman diagrams. In fact,
when working in the particular gauge that we have cho-
sen, every Feynman diagram is broken in pieces (‘hatted’
graphs) each of which contains a cut in one of the propaga-
tors along the line connecting the two ‘special’ legs. Then,
hatted graphs with the same cut are regrouped together in
one decomposition, and the sum of decompositions gives
back the whole color amplitude.
In the process of breaking up the Feynman graphs in

hatted graphs, some extra terms are produced: those cor-
respond to the z→∞ limit of the hatted graph. Thanks to
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the particular structure of the YM vertices, demonstrated
in (56), these extra terms cancel exactly among graphs
with no four-vertices and graphs with one four-vertex and
one propagator less. In the lowest case of one propagator
along the line, the diagram with two three-vertices gives
an extra term that is exactly equal to the diagram with
no propagator and one four-vertex. The latter is a diagram
which, having no propagator along the line, did not fit in an
obvious way in any BCFW decomposition.
The absence of a Yang–Mills structure in a scalar the-

ory is what makes a decomposition along the terms of
BCFW cumbersome. There one would have to accommo-
date the diagram in (40) by adding an ad hoc term in the
recurrence relation which would therefore be less elegant.
The gauge in which we are working explicitly eliminates

the z-dependence from the polarization vectors. In other
gauges the polarization vectors ε+1 and ε

−
n would be af-

fected by the shift. This would complicate significantly the
algebra, as further poles related to vanishing denominators
of these polarization vectors will come into play.
If the identity (40) does not hold, for example, contribu-

tions from the class of diagrams in the left hand side of (40)
would have to be cancelled by contributions from other
classes. The appealing cancelations within subclasses of di-
agrams with a particular partitioning of the external legs
would be lost. Keeping track of the terms in fragmenting
and regrouping Feynman diagrams into BCFW decompo-
sitions would be much harder. Still one could prove the
BCFW decomposition by performing the pole expansion
on any Feynman diagram minus its z→∞ limit, but the
algebra would be particularly cumbersome.
It is becoming increasingly clear that the BCFW

decomposition is a rearrangement of terms of Feynman di-
agramswithin a color-ordered gluonic amplitude. A similar
impression will presumably occur from an approach of am-
plitudes with fermionic lines. In the light of the diagram-
matic proof presented here it is seen that the mechanism
behind any apparent cancelations in the BCFW recursion
formula does not (unfortunately) divulge a deeper princi-
ple or even a contingent effect in gluonic amplitudes, but
results directly from the structure of the Yang–Mills ver-
tices and the cancelations induced by gauge invariance.
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